بایگانی برچسب برای: gastrointestinal

Gastrointestinal.Pharmacology.(Handbook.of.Experimental.Pharmacology).[taliem.ir]

Gastrointestinal Pharmacology

The gastrointestinal (GI) system is responsible for the digestion and absorption of ingested food and liquids. Due to the complexity of the GI tract and the substantial volume of material that could be covered under the scope of GI physiology, this chapter briefly reviews the overall function of the GI tract, and discusses the major factors affecting GI physiology and function, including the intestinal microbiota, chronic stress, inflammation, and aging with a focus on the neural regulation of the GI tract and an emphasis on basic braingut interactions that serve to modulate the GI tract. GI diseases refer to diseases of the esophagus, stomach, small intestine, colon, and rectum. The major symptoms of common GI disorders include recurrent abdominal pain and bloating, heartburn, indigestion/dyspepsia, nausea and vomiting, diarrhea, and constipation. GI disorders rank among the most prevalent disorders, with the most common including esophageal and swallowing disorders, gastric and peptic ulcer disease, gastroparesis or delayed gastric emptying, irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD). Many GI disorders are difficult to diagnose and their symptoms are not effectively managed. Thus, basic research is required to drive the development of novel therapeutics which are urgently needed. One approach is to enhance our understanding of gut physiology and pathophysiology especially as it relates to gut-brain communications since they have clinical relevance to a number of GI complaints and represent a therapeutic target for the treatment of conditions including inflammatory diseases of the GI tract such as IBD and functional gut disorders such as IBS.
Immunotherapy.for.Gastrointestinal.Cancer.[taliem.ir]

Immunotherapy for Gastrointestinal Cancer

More than a century ago, the Nobel Prize for Physiology or Medicine (1908) was awarded jointly to Ilya Mechnikov and Paul Ehrlich “in recognition of their work on immunity” and it was around this time that Ehrlich expounded his hypothesis that the immune system may play a role in the control of tumours . However his suggestion was actually preceded by work carried out by a young New York bone surgeon, William Coley (1862–1936) who had read about a patient who underwent dramatic regression of a neck tumour after developing erysipelas, a skin infection caused by streptococcus pyogenes. Coley subsequently observed that his own patients who developed post-operative infection after surgery seemed to gain some improvement in outcome with respect to their underlying sarcomatous tumours. He believed that these infections may have stimulated the immune system in a way that rendered it more capable of recognising and attacking the cancer. He developed Coley’s toxin comprising killed bacteria, provided by Robert Koch, and he injected this into his patients, reporting a complete regression rate in inoperable sarcomas of approximately 10% . Although the use of Coley’s toxin declined rapidly in the 1950s with the flourishing of cytotoxic drugs and radiotherapy, there are still clinics today that use a variation of this agent comprising Streptococcus pyogenes and Serratia marcescens.
Appetite and gastrointestinal motility Role of ghrelin-family peptides[taliem.ir]

Appetite and gastrointestinal motility: Role of ghrelin-family peptides

Eating disorders, obesity and cachexia endanger the lives of millions of people worldwide. Fortunately, in last decade, there has been a rapid and substantial progress toward uncovering the molecular and neural mechanisms by which energy imbalance develops. In 1999, ghrelin was identified as the first orexigenic gut-derived peptide. It stimulates appetite and controls the gastric motility and the acid secretion through the activation of the growth hormone secretagogue-receptor. After the discovery of ghrelin, other forms of ghrelin-related proteins were isolated from the rat stomach. The unmodified des-noctanoyl form (des-acyl ghrelin) and the recent obestatin act through distinct receptors and contrarily to acyl ghrelin, show an anorexigenic activity. The finding that these three peptide hormones derive from the same precursor exert opposing physiological actions, highlights the importance of post-translational regulatory mechanisms. Further investigations are required to highlight the complexity of ghrelin physiology in order to better understand the mechanisms regulating the energy balance and provide a successful treatment of eating disorders, obesity and cachexia