بایگانی برچسب برای: Chromatin

Neuroepigenomics.in.Aging.and.Disease.[taliem.ir]

Neuroepigenomics in Aging and Disease

From an epigenetic perspective, the genomic chromatin organization of neurons exhibits unique features when compared to somatic cells. Methyl CpG binding protein 2 (MeCP2), through its ability to bind to methylated DNA, seems to be a major player in regulating such unusual organization. An important contribution to this uniqueness stems from the intrinsically disordered nature of this highly abundant chromosomal protein in neurons. Upon its binding to methylated/ hydroxymethylated DNA, MeCP2 is able to recruit a plethora of interacting protein and RNA partners. The fnal outcome is a highly specialized chromatin organization wherein linker histones (histones of the H1 family) and MeCP2 share an organizational role that dynamically changes during neuronal development andthat it is still poorly understood. MeCP2 mutations alter its chromatin-binding dynamics and/or impair the ability of the protein to interact with some of its partners, resulting in Rett syndrome (RTT). Therefore, deciphering the molecular details involved in the MeCP2 neuronal chromatin arrangement is critical for our understanding of the proper and altered functionality of these cells.
Cellular and Molecular Life Sciences.[taliem.ir]

Cellular and Molecular Life Sciences

Operons (clusters of co-regulated genes with related functions) are common features of bacterial genomes. More recently, functional gene clustering has been reported in eukaryotes, from yeasts to filamentous fungi, plants, and animals. Gene clusters can consist of paralogous genes that have most likely arisen by gene duplication. However, there are now many examples of eukaryotic gene clusters that contain functionally related but non-homologous genes and that represent functional gene organizations with operon-like features (physical clustering and co-regulation). These include gene clusters for use of different carbon and nitrogen sources in yeasts, for production of antibiotics, toxins, and virulence determinants in filamentous fungi, for production of defense compounds in plants, and for innate and adaptive immunity in animals (the major histocompatibility locus). The aim of this article is to review features of functional gene clusters in prokaryotes and eukaryotes and the significance of clustering for effective function.
Tumor.Dormancy.and.Recurrence[taliem.ir]

Epigenetic Regulation of Cancer Dormancy as a Plasticity Mechanism for Metastasis Initiation

Metastasis is responsible for the vast majority of cancer-related deaths. However, our understanding of this complex process is still vastly limited, as is the ability to prevent metastasis. Paradoxically, while clinical trials are commonly performed in patients with advanced metastatic disease, disseminated residual disease is rarely targeted. This eliminates a critical window of opportunity to prevent metastasis. Disseminated tumor cells (DTCs) that seed metastases can remain undetected years to decades after treatment of the primary tumor. Late relapse may be due to the ability of DTCs to survive in a quiescent or dormant state and evade therapies. Quiescence, a reversible growth arrest coupled to robust survival, has emerged as a ftting biological defnition for dormancy of single DTCs, but these mechanism remain as one of the least understood “black boxes” in cancer biology. Because of the reversible nature of dormancy, it has been proposed that epigenetic changes are key in regulating the onset, maintenance and reactivation from this state. This is mediated by the post-translational modifcation of histones (PTMs), ATP-dependent chromatin remodeling, DNA methylation, and the incorporation of specialized histone variants into chromatin. Many morphogenetic and micro-environmental cues like retinoic acid, TGFβs, hematopoietic stem cell dormancy regulating cues and BMPs are known to cause chromatin modifcations that dictate cell fate; these same cues were linked to the induction of cancer cell dormancy. Despite progress in understanding cancer cell dormancy, key questions remain open regarding its epigenetic nature. In this chapter we attempt to address key questions related to this topic using available data or hypothetical scenarios to build a model to further dissect how cancer cell dormancy can be manipulated epigenetically as a therapeutic strategy.