بایگانی برچسب برای: Regulation

Biomarkers.in.Bone.Disease.[taliem.ir]

Biomarkers in Bone Disease

The bone has the function of supporting the body; the bone is a tissue characterized by its rigidity, hardness, and power of regeneration and repair. The bone has several functions including protection of the vital organs, environment for marrow, mineral reservoir for calcium homeostasis, reservoir of growth factors and cytokines, and taking part in acid–base balance. Bone metabolism is a dynamic and continuous remodeling process that is normally maintained in a tightly coupled balance between resorption of old or injured bone and formation of new bone. Several hormones and factors are involved in bone metabolism, which regulation depends from the complex interaction among them. Considering the various phases of the bone cycle, markers of bone metabolism may be classified either as markers of bone formation, markers of bone resorption, and markers of bone metabolism regulation. The aim of this chapter will be to examine biochemical markers in bone metabolism in order to give readers a guide about the normal physiological process to better understand the mechanisms underlying bone diseases.
Transcriptional Regulation of ROS[taliem.ir]

Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root

The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Using high-resolution expression data from the Arabidopsis root, we identified a transcription factor, UPBEAT1 (UPB1), that regulates this balance. Genomewide expression profiling coupled with ChIP-chip analysis revealed that UPB1 directly regulates the expression of a set of peroxidases that modulate the balance of reactive oxygen species (ROS) between the zones of cell proliferation and the zone of cell elongation where differentiation begins. Disruption of UPB1 activity alters this ROS balance, leading to a delay in the onset of differentiation. Modulation of either ROS balance or peroxidase activity through chemical reagents affects the onset of differentiation in a manner consistent with the postulated UPB1 function. This pathway functions independently of auxin and cytokinin plant hormonal signaling. Comparison to ROS- regulated growth control in animals suggests that a similar mechanism is used in plants and animals.