بایگانی برچسب برای: controller

A fuzzy logic based multi-agents controller[taliem.ir]

A fuzzy logic based multi-agents controller

This paper presents a fuzzy logic based controller (Multi-Agents System Controller (MASC)) which regulates the number of agents released to the network on a Multi-Agents Systems (MASs). A fuzzy logic (FL) model for the controller is as presented. The controller is a two-inputs-one- output system. The controllability is based on the network size (NTZ) and the available bandwidth (ABD) which are the inputs to the controller, the controller’s output is number of agents (ANG). The model was simulated using SIMULINK software. The simulation result is presented and it shows that ABD is the major constraint for the number of agents released to the network
Fuzzy based damping controller for TCSC using local measurements[taliem.ir]

Fuzzy based damping controller for TCSC using local measurements to enhance transient stability of power systems

This paper proposes a local fuzzy based damping controller (LFDC) for thyristor controlled series capacitor (TCSC) to improve transient stability of power systems. In order to implement the proposed scheme, detailed model of TCSC, based on actual behavior of thyristor valves, is adopted. The LFDC uses the frequency at the TCSC bus as a local feedback signal, to control the firing angle. The parameters of fuzzy controller are tuned using an off-line method through chaotic optimization algorithm (COA). To verify the proposed LFDC, numerical simulations are carried out in Matlab/Simpower toolbox for the following case studies: two-area two-machine (TATM), WSCC three-machine nine-bus and Kundur’s two-area fourmachine (TAFM) systems under various faults types. In this regard, to more evaluate the effectiveness of the proposed method, the simulation results are compared with the wide-area fuzzy based damping controller (WFDC). Moreover, the transient behavior of the detailed and phasor models of the TCSC is discussed in the TATM power system. The simulation results confirm that the proposed LFDC is an efficient tool for transient stability improvement since it utilizes only local signals, which are easily available.