بایگانی برچسب برای: Biomarkers

Biomarkers.in.Bone.Disease.[taliem.ir]

Biomarkers in Bone Disease

The bone has the function of supporting the body; the bone is a tissue characterized by its rigidity, hardness, and power of regeneration and repair. The bone has several functions including protection of the vital organs, environment for marrow, mineral reservoir for calcium homeostasis, reservoir of growth factors and cytokines, and taking part in acid–base balance. Bone metabolism is a dynamic and continuous remodeling process that is normally maintained in a tightly coupled balance between resorption of old or injured bone and formation of new bone. Several hormones and factors are involved in bone metabolism, which regulation depends from the complex interaction among them. Considering the various phases of the bone cycle, markers of bone metabolism may be classified either as markers of bone formation, markers of bone resorption, and markers of bone metabolism regulation. The aim of this chapter will be to examine biochemical markers in bone metabolism in order to give readers a guide about the normal physiological process to better understand the mechanisms underlying bone diseases.
Serum.Plasma.Proteomics.Methods.[taliem.ir]

Serum/Plasma Proteomics

Blood proteome analysis for biomarker discovery represents one of the most challenging tasks to be achieved through clinical proteomics due to the sample complexity, such as the extreme heterogeneity of proteins in very dynamic concentrations, and to the observation of proper sampling and storage conditions. Quantitative and qualitative proteomics profling of plasma and serum could be useful both for the early detection of diseases and for the evaluation of pathological status. Two main sources of variability can affect the precision and accuracy of the quantitative experiments designed for biomarker discovery and validation. These sources are divided into two categories, pre-analytical and analytical, and are often ignored; however, they can contribute to consistent errors and misunderstanding in biomarker research. In this chapter, we review critical pre-analytical and analytical variables that can influence quantitative proteomics. According to guidelines accepted by proteomics community, we propose some recommendations and strategies for a proper proteomics analysis addressed to biomarker studies.
Multiple.Sclerosis.Bench.to.Bedside.Global.[taliem.ir]

Multiple Sclerosis: Bench to Bedside

Extracellular vesicles are recently described as specialized structures for intercellular communication. Their role in the central nervous system was diffusely studied in both physiological and pathological condition. In particular, an increased extracellular vesicle number was detected in several autoimmune diseases, including multiple sclerosis, a chronic autoimmune, inflammatory, demyelinating and neurodegenerative disease. This chapter summarizes the available information on the involvement of the extracellular vesicles in multiple sclerosis pathogenesis and their possible use as biomarker of therapy effcacy.
Handbook.of.Biomarkers.Second.Edition.[taliem.ir]

The Handbook of Biomarkers

There are several defnitions of biomarkers. A biomarker is a characteristic that can be objectively measured and evaluated as an indicator of a physiological as well as a pathological process or pharmacological response to a therapeutic intervention. Classical biomarkers are measurable alterations in blood pressure, blood lactate levels following exercise and blood glucose in diabetes mellitus. Any specifc molecular alteration of a cell on DNA, RNA, metabolite or protein level can be referred to as a molecular biomarker. In the era of molecular biology, biomarkers usually mean molecular biomarkers and can be divided into three broad categories: 1. Those that track disease progression over time and correlate with known clinical measures 2. Those that detect the effect of a drug 3. Those that serve as surrogate endpoints in clinical trials While researchers are studying all three categories, biotechnology and pharmaceutical companies favor using biomarkers as drug discovery tools – not only to detect biological responses to experimental drugs but also to aid in the discovery of new targets for therapeutic intervention. A biomarker can be as simple as a laboratory test or as complex as a pattern of genes or proteins. From a practical point of view, the biomarker would specifcally and sensitively reflect a disease state and could be used for diagnosis as well as for disease monitoring during and following therapy. The term “negative biomarker” is used for a marker that is defcient or absent in a disease.