بایگانی برچسب برای: Reinforcement learning
![A-new-marketing-strategy-map-for-direct-marketing.[taliem.ir]](https://taliem.ir/wp-content/uploads/A-new-marketing-strategy-map-for-direct-marketing.taliem.ir_.jpg)
A new marketing strategy map for direct marketing
اطلاع رسانیDirect marketing is one of the most effective marketing methods with an aim to maximize the customer’s lifetime value. Many cost-sensitive learning methods which identify valuable customers to maximize expected profit have been proposed. However, current cost-sensitive methods for profit maximization do not identify how to control the defection probability while maximizing total profits over the customer’s lifetime. Unfortunately, optimal marketing actions to maximize profits often perform poorly in minimizing the defection probability due to a conflict between these two objectives. In this paper, we propose the sequential decision making method for profit maximization under the given defection probability in direct marketing. We adopt a Reinforcement Learning algorithm to determine the sequential optimal marketing actions. With this finding, we design a marketing strategy map which helps a marketing manager identify sequential optimal campaigns and the shortest paths toward desirable states. Ultimately, this strategy leads to the ideal design for more effective campaigns.
![Distributed resource management in wireless sensor networks[taliem.ir]](https://taliem.ir/wp-content/uploads/Distributed-resource-management-in-wireless-sensor-networkstaliem.ir_.jpg)
Distributed resource management in wireless sensor networks using reinforcement learning
اطلاع رسانیIn wireless sensor networks (WSNs), resourceconstrained nodes are expected to operate in highly dynamic and often unattended environments. Hence, support for intelligent, autonomous, adaptive and distributed resource management is an essential ingredient of a middleware solution for developing scalable and dynamic WSN applications. In this article, we present a resource management framework based on a two-tier reinforcement learning scheme to enable autonomous self-learning and adaptive applications with inherent support for efficient resource management. Our design goal is to build a system with a bottom-up approach where each sensor node is responsible for its resource allocation and task selection. The first learning tier (micro-learning) allows individual sensor nodes to self-schedule their tasks by using only local information, thus enabling a timely adaptation. The second learning tier (macro-learning) governs the micro-learners by tuning their operating parameters so as to guide the system towards a global application-specific optimization goal (e.g., maximizing the network lifetime). The effectiveness of our framework is exemplified by means of a target tracking application built on top of it. Finally, the performance of our scheme is compared against other existing approaches by simulation. We show that our twotier reinforcement learning scheme is significantly more efficient than traditional approaches to resource management while fulfilling the application requirements.