سبد خرید

راه های حفظ امنیت اطلاعات

در سال های اخیر واژه امنیت اطلاعات میزان قابل توجهی رشد کرده و مورد توجه مردم و سران مملکت قرار گرفته است. هر چیزی که باعث شود بتوانیم اطلاعاتمان را از دسترسی افراد غیرمجاز به آن حفظ کنیم را امنیت اطلاعات می گویند. سران مملکت، دولت ها، شرکت ها ، بیمارستان ها ، مراکز نظامی و سایر شغل ها در مورد کارکنان، موجودی شرکتشان ,محصولاتشان و غیره اطلاعات محرمانه ای دارند که اگر این اطلاعات به دست رقیبشان بیافتد باعث ورشکستگی ،خسارات مالی و ضرر های زیادی در جنبه های گوناگون برای آنها می شود به همین دلیل سعی در حفظ آن دارند.

استفاده از کامپیوترهای شخصی و شبکه‌های کامپیوتری و به دنبال آن اینترنت که (بزرگترین شبکه جهانی) است، امروزه مورد استفاده زیادی بوده است. استفاده‌کنندگان کامپیوتر برای استفاده از مزایای فناوری اطلاعات و ارتباطات، باید اصول و روش های خاصی را رعایت کنند تا در این تله نیافتند.

شبکه های ارتباطی

تقسیم بندی شبکه های ارتباطی شبکه های ارتباطی را می توان به دو دسته کلی تقسیم بندی کرد: شبکه های ارتباطی سوئیچی شبکه های ارتباطی پخشی شبکه های ارتباطی سوئیچی نیز خود به شبکه های سوئیچینگ مداری و شبکه های سوئیچینگ بسته تقسیم می شوند. سوئیچینگ مداری و سوئیچینگ بسته دو فناوری متفاوت هستند که در … خواندن ادامه “شبکه های ارتباطی”

شبکه های نرم افزار محور

امروزه اینترنت سنتی با پیشرفت های خوبی که در زمینه فناوری داشته با چالش های زیادی روبرو شده طی مدت زیادی تکنولوژی شبکه نسبت به دیگر تکنولوژی ها با سرعت پایین تری پیشرفت میکرد و باعث شد که تکنولوژی سنتی نتواند نیازهای کاربران را و شبکه های بزرگ را پاسخ بدهد و این امر باعث شد تا صنعت شبکه به فکر تغییر ساختار آن باشد که بتواند نیازهای شبکه ها را پاسخ دهد.SND فناوری جدیدی درشبکه های کامپیوتری است وبه خوبی به نیاز کاربران پاسخ میدهد. SND میتواند ار هر نقطه یا سرور با نقطه و سرور دیگر ارتباط برقرار کند وسرعت زیادی داشته باشد کار اصلی آن جداسازی سطح داده از سطح کنترل است.

ارتباطات اطلاعات حسابداري – شبکه هاي کامپیوتري

خودتنظیمی ، پیامدهای ارزشمندی در فرآیند یادگیری، آموزش و حتی موفقیت زندگی داردو یکی از مفاهیم مطرح در تعلیم و تربیت معاصراست. چهارچوب اصلی نظریه یادگیری خودتنظیمی براین اساس استوار است که افراد چگونه از نظرباورهای فراشناختی، انگیزشی و رفتاری، یادگیری خود را سازماندهی میکنند. یادگیری خودتنظیمی به معنای ظرفیت فرد برای تعدیل رفتار متناسب با شرایط و تغییرات محیط بیرونی و درونی است و شامل توانایی فرد در سازماندهی و خودمدیریتی رفتارهایش جهت رسیدن به اهداف گوناگون یادگیری است و از دو مولفه راهبردهای انگیزشی و راهبردهای یادگیری تشکیل شده است در نظریه شناختی – اجتماعی تصویری از رفتار انسانی را ترسیم میکنند که مهم ترین عنصر آن خودکارآمدی. خودکارآمدی را به عنوان باور فرد درباره توانایی انجام عملکردهای مورد نظر، تعریف نموده اند. در محیط تحصیلی، خودکارآمدی به باورهای دانشجو در ارتباط با توانایی انجام وظایف درسی تعیین شده اشاره دارد. دانشجویانی که خودکارآمد یبیشتری دارند، تمایل، تلاش و استقامت بیشتری را در انجام وظایف درسی بکار می گیرند و به توانایی خود اطمینان دارند.

ارائه سیستم حفاظتی گسترده نوین جهت بهبود مدیریت منابع انرژي در شبکه هاي هوشمند

در شبکه هاي توزیع، انرژي از منبع به صورت شعاعی به نقاط بار انتقال مییابد. سیستم حفاظت این گونه شبکه ها بسیار ساده است. اتصال منابع تولید پراکنده به شبکه هاي توزیع چالش هایی، همچون حفاظت از آن را پدیده آورده است. جریان اتصال کوتاه به علت حضور منابع تولید پراکنده متغیر می باشد و همچنین جهت جریان می تواند دو طرفه باشد. تغییر مناسب تنظیمات شبکه به طوریکه انرژي بطور مطمئن و با کیفیت مناسب به حداکثر مصرف کنندگان در این زمان ارسال گردد از اعمال مهم بهره برداري در شبکه هاي توزیع می باشد. در این مقاله سیستم حفاظت مرکزي جدیدي ارائه می گردد که از رابطه اي گسترده براي نظارت بر شبکه، منابع تولیدات پراکنده و به روزرسانی جریان هاي خطاي رله طبق تغییرات در سیستم استفاده می کند و همچنین از طریق سیستم کنترل مرکزي جهت قطع و وصل کلیدهاي منابع تولید پراکنده، کلیدهاي شبکه اصلی و… استفاده می شود. روش پیشنهادي، روي یک شبکه شامل توربین بادي مجهز به ژنراتور سنکرون مغناطیس دایم با استفاده از نرم افزار PSCAD/EMTDCاعمال شده است.

Distributed resource management in wireless sensor networks using reinforcement learning

In wireless sensor networks (WSNs), resourceconstrained nodes are expected to operate in highly dynamic and often unattended environments. Hence, support for intelligent, autonomous, adaptive and distributed resource management is an essential ingredient of a middleware solution for developing scalable and dynamic WSN applications. In this article, we present a resource management framework based on a two-tier reinforcement learning scheme to enable autonomous self-learning and adaptive applications with inherent support for efficient resource management. Our design goal is to build a system with a bottom-up approach where each sensor node is responsible for its resource allocation and task selection. The first learning tier (micro-learning) allows individual sensor nodes to self-schedule their tasks by using only local information, thus enabling a timely adaptation. The second learning tier (macro-learning) governs the micro-learners by tuning their operating parameters so as to guide the system towards a global application-specific optimization goal (e.g., maximizing the network lifetime). The effectiveness of our framework is exemplified by means of a target tracking application built on top of it. Finally, the performance of our scheme is compared against other existing approaches by simulation. We show that our twotier reinforcement learning scheme is significantly more efficient than traditional approaches to resource management while fulfilling the application requirements.

An energy efficient approach to extend network life time of wireless sensor networks

The energy consumption in wireless sensor networks is a significant matter and there are many ways to conserve energy. The use of mobile sensors is of great relevance to minimize the total energy dissipation in communication and overhead control packets. In a WSN, sensor nodes deliver sensed data back to the sink via multi hopping. The sensor nodes near the sink will usually consume more battery power than others; consequently, these nodes will quickly drain out their battery energy and decrease in the network lifetime of the WSN. The presence of mobilesinks causes increased energy reduction in their proximity, due to more relay load under multi hop communication. Moreover, node deployment technique can also be used to improve the life time of the network. Performance comparisons have been done by simulations between different routing protocols and our approach show efficient results.

The Transitional Behavior of Interference in Millimeter Wave Networks and Its Impact on Medium Access Control

Millimeter wave (mmWave) communication systems use large number of antenna elements that can potentially overcome severe channel attenuation by narrow beamforming. Narrow-beam operation in mmWave networks also reduces multiuser interference, introducing the concept of noise-limited wireless networks as opposed to interference-limited ones. The noise-limited or interference-limited regime heavily reflects on the medium access control (MAC) layer throughput and on proper resource allocation and interference management strategies. Yet these regimes are ignored in current approaches to mmWave MAC layer design, with the potential disastrous consequences on the communication performance. In this paper, we investigate these regimes in terms of collision probability and throughput. We derive tractable closed-form expressions for the collision probability and MAC layer throughput of mmWave ad hoc networks, operating under slotted ALOHA. The new analysis reveals that mmWave networks may exhibit a non-negligible transitional behavior from a noise-limited regime to an nterference-limited one, depending on the density of the transmitters, density and size of obstacles, transmission probability, operating beamwidth, and transmission power. Such transitional behavior necessitates a new framework of adaptive hybrid resource allocation procedure, containing both contention-based and contention-free phases with on-demand realization of the contention-free phase. Moreover,the conventional collision avoidance procedure in the contentionbased phase should be revisited, due to the transitional behavior of interference, to maximize throughput/delay performance of mmWave networks. We conclude that, unless proper hybrid schemes are investigated, the severity of the transitional behavior may significantly reduce throughput/delay performance of mmWave networks.

Computational Models for Social Network Analysis: A Brief Survey

With the exponential growth of online social network services such as Facebook and Twitter, social networks and social medias become more and more important, directly influencing politics, economics, and our daily life. Mining big social networks aims to collect and analyze web-scale social data to reveal patterns of individual and group behaviors. It is an inherently interdisciplinary academic field which emerged from sociology, psychology, statistics, and graph theory. In this article, I briefly survey recent progress on social network mining with an emphasis on understanding the interactions among users in the large dynamic social networks. I will start with some basic knowledge for social network analysis, including methodologies and tools for macro-level, meso-level and microlevel social network analysis. Then I will give an overall roadmap of social network mining. After that, I will describe methodologies for modeling user behavior including state-of-the-art methods forlearning user profiles, and introduce recent progress on modeling dynamics of user behaviors using deep learning. Then I will present models and algorithms for quantitative analysis on social interactions including homophily and social influence.Finally, I will introduce network structure model including social group formation, and network topology generation. We will introduce recent developed network embedding algorithms for modeling social networks with the embedding techniques. Finally, I will use several concrete examples from Alibaba, the largest online shopping website in the world, and WeChat, the largest social messaging service in China, to explain how online social networks influence our offline world.

A self-organized structure for mobility management in wireless networks

The objective of this work is to analyse performance of unstable mobile nodes with selforganization structures in Delay Tolerant Networks (DTN). This process enables the nodes to utilize their power fairly, and ensures that the links are established between nodes and used to improve the connectivity. In this paper two approaches are proposed: 1. Self-Healing (SH) and 2. Unstable Topology Structure (UTS) approaches based on localized computations. The proposed work is proven with simulations by analysing node degree, coverage area and Quality of Service (QoS) parameters. The performance of the work is analysed in a network simulator with mathematical models.

درحال بارگذاری ...